Artificial Intelligence, Financial Development, and Ecological Sustainability: A Panel ARDL Assessment for the Nordic Region

Authors

https://doi.org/10.48313/iee.v1i2.47

Abstract

This study investigates how artificial intelligence innovation, banking development, and stock market capitalization shape ecological sustainability in the Nordic region from 1990 to 2020. Using the STIRPAT framework, the analysis first evaluates cross-sectional dependence and slope heterogeneity, revealing strong economic and environmental interlinkages among the countries. Mixed integration orders identified through first- and second-generation unit root tests support the application of the Panel Autoregressive Distributed Lag model to explore dynamic relationships. The findings indicate that economic growth, stock market expansion, and rapid urbanization intensify ecological pressure in both the short and long run. In contrast, advancements in AI innovation and the strengthening of the banking sector contribute to reducing environmental degradation, particularly over the long term, suggesting their potential roles in supporting cleaner production and efficient resource use. Evidence from the Dumitrescu–Hurlin causality test further shows unidirectional causal relationships running from AI innovation, stock market capitalization, and urbanization to the ecological footprint, while economic growth and banking development exhibit bidirectional causal interactions with environmental outcomes. Overall, the study provides timely empirical insights into how technological progress and financial system structures can be aligned with ecological objectives. These findings offer important guidance for policymakers seeking to integrate innovation-driven and finance-based strategies into sustainability planning across the Nordic economies.

Keywords:

Artificial intelligence innovation, Banking development, Stock market capitalization, Ecological footprint, Nordic countries

References

  1. [1] Voumik, L. C., Hossain, M. S., Islam, M. A., & Rahaman, A. (2022). Power generation sources and carbon dioxide emissions in BRICS countries: Static and dynamic panel regression. Strategic planning for energy and the environment, 401–424. https://doi.org/10.13052/spee1048-5236.4143

  2. [2] GFN. (2018). Global footprint network. https://data.footprintnetwork.org/?_ga=2.134472181.508123949.1609248689-1393775646.1607921298#/

  3. [3] Apergis, N., Pinar, M., & Unlu, E. (2023). How do foreign direct investment flows affect carbon emissions in BRICS countries? Revisiting the pollution haven hypothesis using bilateral FDI flows from OECD to BRICS countries. Environmental science and pollution research, 30(6), 14680–14692. https://doi.org/10.1007/s11356-022-23185-4

  4. [4] Khan, I., Hou, F., & Le, H. P. (2021). The impact of natural resources, energy consumption, and population growth on environmental quality: Fresh evidence from the United States of America. Science of the total environment, 754, 142222. https://doi.org/10.1016/j.scitotenv.2020.142222

  5. [5] Dogan, E., Majeed, M. T., & Luni, T. (2022). Revisiting the nexus of ecological footprint, unemployment, and renewable and non-renewable energy for South Asian economies: Evidence from novel research methods. Renewable energy, 194, 1060–1070. https://doi.org/10.1016/j.renene.2022.05.165

  6. [6] Sahoo, M., & Sethi, N. (2021). The intermittent effects of renewable energy on ecological footprint: evidence from developing countries. Environmental science and pollution research, 28(40), 56401–56417. https://doi.org/10.1007/s11356-021-14600-3

  7. [7] Ridwan, M., Tahsin, M. S., Al-Absy, M. S. M., Eleais, M., Ridzuan, A. R., & Mukthar, K. P. J. (2025). Economic alchemy: Unraveling the nexus between trade openness, inflation, exchange rates, and economic growth in bangladesh. International journal of economics and financial issues, 15(3), 244. https://www.researchgate.net/profile/Mohammad-Ridwan-9/publication/390726438_Economic_Alchemy_Unraveling_the_Nexus_between_Trade_Openness_Inflation_Exchange_Rates_and_Economic_Growth_in_Bangladesh/links/67fa52d6bfbe974b23a95ba3/Economic-Alchemy-Unraveling-the-Nexus-between-Trade-Openness-Inflation-Exchange-Rates-and-Economic-Growth-in-Bangladesh.pdf

  8. [8] Sovacool, B. K. (2017). Contestation, contingency, and justice in the Nordic low-carbon energy transition. Energy policy, 102, 569–582. https://doi.org/10.1016/j.enpol.2016.12.045

  9. [9] Maczionsek, M. I. J. H., Dillman, K. J., & Heinonen, J. (2023). Linking perception and reality: Climate-sustainability perception and carbon footprints in the Nordic countries. Journal of cleaner production, 430, 139750. https://doi.org/10.1016/j.jclepro.2023.139750

  10. [10] Sovacool, B. K., Lindboe, H. H., & Odgaard, O. (2008). Is the Danish wind energy model replicable for other countries? The electricity journal, 21(2), 27–38. https://doi.org/10.1016/j.tej.2007.12.009

  11. [11] Borup, M. (2008). Nordic energy innovation systems-patterns of need integration and co-operation [presentation]. NORIA-energy policy seminar. https://backend.orbit.dtu.dk/ws/portalfiles/portal/3144726/2008_150.pdf

  12. [12] Sovacool, B. K. (2013). Energy policymaking in Denmark: Implications for global energy security and sustainability. Energy policy, 61, 829–839. https://doi.org/10.1016/j.enpol.2013.06.106

  13. [13] KPMG. (2022). Survey of sustainability reporting 2022. https://assets.kpmg.com/content/dam/kpmgsites/no/pdf/SSR-Report_FINAL_High.pdf.coredownload.inline.pdf

  14. [14] Ridwan, M., Akther, A., Dhar, B. K., Roshid, M. M., Mahjabin, T., Bala, S., & Hossain, H. (2025). Advancing circular economy for climate change mitigation and sustainable development in the nordic region. Sustainable development, 33(S1), 225–244. https://doi.org/10.1002/sd.3563

  15. [15] Agyekum, E. B., Adebayo, T. S., Bekun, F. V., Kumar, N. M., & Panjwani, M. K. (2021). Effect of two different heat transfer fluids on the performance of solar tower CSP by comparing recompression supercritical CO2 and rankine power cycles, China. Energies, 14(12), 3426. https://doi.org/10.3390/en14123426

  16. [16] Wang, Z., Ahmed, Z., Zhang, B., & Wang, B. (2019). The nexus between urbanization, road infrastructure, and transport energy demand: empirical evidence from Pakistan. Environmental science and pollution research, 26(34), 34884–34895. https://doi.org/10.1007/s11356-019-06542-8

  17. [17] Pattak, D. C., Tahrim, F., Salehi, M., Voumik, L. C., Akter, S., Ridwan, M., … & Zimon, G. (2023). The driving factors of Italy’s CO2 emissions based on the STIRPAT model: ARDL, FMOLS, DOLS, and CCR approaches. Energies, 16(15), 5845. https://doi.org/10.3390/en16155845

  18. [18] Nordic Statistic database. (2022). Nordic statistic database. www.nordicstatistics.org

  19. [19] Longsheng, C., Shah, S. A. A., Solangi, Y. A., Ahmad, M., & Ali, S. (2022). An integrated SWOT-multi-criteria analysis of implementing sustainable waste-to-energy in Pakistan. Renewable energy, 195, 1438–1453. https://doi.org/10.1016/j.renene.2022.06.112

  20. [20] Zhang, Q., Shah, S. A. R., & Yang, L. (2022). Modeling the effect of disaggregated renewable energies on ecological footprint in E5 economies: do economic growth and R&D matter? Applied energy, 310, 118522. https://doi.org/10.1016/j.apenergy.2022.118522

  21. [21] Shahbaz, M., Dogan, M., Akkus, H. T., & Gursoy, S. (2023). The effect of financial development and economic growth on ecological footprint: evidence from top 10 emitter countries. Environmental science and pollution research, 30(29), 73518–73533. https://doi.org/10.1007/s11356-023-27573-2

  22. [22] Balcilar, M., Ozdemir, Z. A., Ozdemir, H., & Shahbaz, M. (2018). Carbon dioxide emissions, energy consumption and economic growth: The historical decomposition evidence from G-7 countries. Work pap, 1–44. http://repec.economics.emu.edu.tr/repec/emu/wpaper/15-41.pdf

  23. [23] Ridwan, M. (2025). Artificial intelligence and green development: The role of financial market efficiency in the United States. Development and sustainability in economics and finance, 8, 100099. https://doi.org/10.1016/j.dsef.2025.100099

  24. [24] Li, R., Wang, X., & Wang, Q. (2022). Does renewable energy reduce ecological footprint at the expense of economic growth? An empirical analysis of 120 countries. Journal of cleaner production, 346, 131207. https://doi.org/10.1016/j.jclepro.2022.131207

  25. [25] Kumari, N., & Pandey, S. (2023). Application of artificial intelligence in environmental sustainability and climate change. In Visualization techniques for climate change with machine learning and artificial intelligence (pp. 293–316). Elsevier. https://doi.org/10.1016/B978-0-323-99714-0.00018-2

  26. [26] Rasheed, M. Q., Yuhuan, Z., Haseeb, A., Ahmed, Z., & Saud, S. (2024). Asymmetric relationship between competitive industrial performance, renewable energy, industrialization, and carbon footprint: Does artificial intelligence matter for environmental sustainability? Applied energy, 367, 123346. https://doi.org/10.1016/j.apenergy.2024.123346

  27. [27] Chen, P., Gao, J., Ji, Z., Liang, H., & Peng, Y. (2022). Do artificial intelligence applications affect carbon emission performance?—evidence from panel data analysis of Chinese cities. Energies, 15(15), 5730. https://doi.org/10.3390/en15155730

  28. [28] Kashka, F. M., Sarvestani, Z. T., Pirdashti, H., Motevali, A., & Nadi, M. (2022). Predicting of agro-environmental footprint with artificial intelligence (soybean cultivation in various scenarios), 1–44. https://doi.org/10.21203/rs.3.rs-1098555/v1

  29. [29] Arya, A., Bachheti, A., Bachheti, R. K., Singh, M., & Chandel, A. K. (2024). Role of artificial intelligence in minimizing carbon footprint: A systematic review of recent insights. In Biorefinery and industry 4.0: empowering sustainability (pp. 365–386). Springer. https://doi.org/10.1007/978-3-031-51601-6_14

  30. [30] Liu, K., Mahmoud, H. A., Liu, L., Halteh, K., Arnone, G., Shukurullaevich, N. K., & Alzoubi, H. M. (2024). RETRACTED: Exploring the Nexus between Fintech, natural resources, urbanization, and environment sustainability in China: A QARDL study. Resources policy, 89, 104557. https://doi.org/10.1016/j.resourpol.2023.104557

  31. [31] Baloch, M. A., Zhang, J., Iqbal, K., & Iqbal, Z. (2019). The effect of financial development on ecological footprint in BRI countries: Evidence from panel data estimation. Environmental science and pollution research, 26(6), 6199–6208. https://doi.org/10.1007/s11356-018-3992-9

  32. [32] Zhao, J., Shahbaz, M., Dong, X., & Dong, K. (2021). How does financial risk affect global CO2 emissions? The role of technological innovation. Technological forecasting and social change, 168, 120751. https://doi.org/10.1016/j.techfore.2021.120751

  33. [33] Shahbaz, M., Jam, F. A., Bibi, S., & Loganathan, N. (2016). Multivariate Granger causality between CO2 emissions, energy intensity and economic growth in Portugal: evidence from cointegration and causality analysis. Technological and economic development of economy, 22(1), 47–74. https://doi.org/10.3846/20294913.2014.989932

  34. [34] Radulescu, M., Balsalobre-Lorente, D., Joof, F., Samour, A., & Tuersoy, T. (2022). Exploring the impacts of banking development, and renewable energy on ecological footprint in OECD: New evidence from method of moments quantile regression. Energies, 15(24), 9290. https://doi.org/10.3390/en15249290

  35. [35] Gharbi, I., Rahman, M. H., Muryani, M., Esquivias, M. A., & Ridwan, M. (2025). Exploring the influence of financial development, renewable energy, and tourism on environmental sustainability in Tunisia. Discover sustainability, 6(1), 127. https://doi.org/10.1007/s43621-025-00896-5

  36. [36] Samour, A., Moyo, D., & Tursoy, T. (2022). Renewable energy, banking sector development, and carbon dioxide emissions nexus: A path toward sustainable development in South Africa. Renewable energy, 193, 1032–1040. https://doi.org/10.1016/j.renene.2022.05.013

  37. [37] Khan, M. A., & Rehan, R. (2022). Retracted: Revealing the impacts of banking sector development on renewable energy consumption, green growth, and environmental quality in China: Does financial inclusion matter? Frontiers in energy research, 10, 940209. https://doi.org/10.3389/fenrg.2022.940209

  38. [38] Altıntaş, N., Açıkgöz, F., Okur, M., Öztürk, M., & Aydın, A. (2024). Renewable energy and banking sector development impact on load capacity factor in Malaysia. Journal of cleaner production, 434, 140143. https://doi.org/10.1016/j.jclepro.2023.140143

  39. [39] Obiora, S. C., Bamisile, O., Opoku-Mensah, E., & Kofi Frimpong, A. N. (2020). Impact of banking and financial systems on environmental sustainability: An overarching study of developing, emerging, and developed economies. Sustainability, 12(19), 8074. https://doi.org/10.3390/su12198074

  40. [40] Taghizadeh-Hesary, F., Zakari, A., Alvarado, R., & Tawiah, V. (2022). The green bond market and its use for energy efficiency finance in Africa. China finance review international, 12(2), 241–260. https://doi.org/10.1108/CFRI-12-2021-0225

  41. [41] Polcyn, J., Voumik, L. C., Ridwan, M., Ray, S., & Vovk, V. (2023). Evaluating the influences of health expenditure, energy consumption, and environmental pollution on life expectancy in Asia. International journal of environmental research and public health, 20(5), 4000. https://doi.org/10.3390/ijerph20054000

  42. [42] Ozturk, I., & Acaravci, A. (2013). The long-run and causal analysis of energy, growth, openness and financial development on carbon emissions in Turkey. Energy economics, 36, 262–267. https://doi.org/10.1016/j.eneco.2012.08.025

  43. [43] Sadorsky, P. (2010). The impact of financial development on energy consumption in emerging economies. Energy policy, 38(5), 2528–2535. https://doi.org/10.1016/j.enpol.2009.12.048

  44. [44] Mhadhbi, M., Gallali, M. I., Goutte, S., & Guesmi, K. (2021). On the asymmetric relationship between stock market development, energy efficiency and environmental quality: a nonlinear analysis. International review of financial analysis, 77, 101840. https://doi.org/10.1016/j.irfa.2021.101840

  45. [45] Nguyen, D. K., Huynh, T. L. D., & Nasir, M. A. (2021). Carbon emissions determinants and forecasting: Evidence from G6 countries. Journal of environmental management, 285, 111988. https://doi.org/10.1016/j.jenvman.2021.111988

  46. [46] Zeqiraj, V., Sohag, K., & Soytas, U. (2020). Stock market development and low-carbon economy: The role of innovation and renewable energy. Energy economics, 91, 104908. https://doi.org/10.1016/j.eneco.2020.104908

  47. [47] Habiba, U., & Xinbang, C. (2022). The impact of financial development on CO2 emissions: New evidence from developed and emerging countries. Environmental science and pollution research, 29(21), 31453–31466. https://doi.org/10.1007/s11356-022-18533-3

  48. [48] Raihan, A., Voumik, L. C., Ridwan, M., Ridzuan, A. R., Jaaffar, A. H., & Yusoff, N. Y. M. (2023). From growth to green: Navigating the complexities of economic development, energy sources, health spending, and carbon emissions in Malaysia. Energy reports, 10, 4318–4331. https://doi.org/10.1016/j.egyr.2023.10.084

  49. [49] A Omojolaibi, J., & P Nathaniel, S. (2022). Assessing the potency of environmental regulation in maintaining environmental sustainability in MENA countries: An advanced panel data estimation. Journal of public affairs, 22(3), e2526. https://doi.org/10.1002/pa.2526

  50. [50] Pata, U. K., Aydin, M., & Haouas, I. (2021). Are natural resources abundance and human development a solution for environmental pressure? Evidence from top ten countries with the largest ecological footprint. Resources policy, 70, 101923. https://doi.org/10.1016/j.resourpol.2020.101923

  51. [51] Raihan, A., Hasan, M. A., Voumik, L. C., Pattak, D. C., Akter, S., & Ridwan, M. (2024). Sustainability in Vietnam: Examining economic growth, energy, innovation, agriculture, and forests’ impact on CO2 emissions. World development sustainability, 4, 100164. https://doi.org/10.1016/j.wds.2024.100164

  52. [52] Nuta, F., Shahbaz, M., Khan, I., Cutcu, I., Khan, H., & Eren, M. V. (2024). Dynamic impact of demographic features, FDI, and technological innovations on ecological footprint: evidence from European emerging economies. Environmental science and pollution research, 31(12), 18683–18700. https://doi.org/10.1007/s11356-024-32345-7

  53. [53] Idroes, G. M., Hardi, I., Rahman, M. H., Afjal, M., Noviandy, T. R., & Idroes, R. (2024). The dynamic impact of non-renewable and renewable energy on carbon dioxide emissions and ecological footprint in Indonesia. Carbon research, 3(1), 35. The dynamic impact of non-renewable and renewable energy on carbon dioxide emissions and ecological footprint in Indonesia

  54. [54] Ridwan, M., Urbee, A. J., Voumik, L. C., Das, M. K., Rashid, M., & Esquivias, M. A. (2024). Investigating the environmental Kuznets curve hypothesis with urbanization, industrialization, and service sector for six South Asian Countries: Fresh evidence from Driscoll Kraay standard error. Research in globalization, 8, 100223. https://doi.org/10.1016/j.resglo.2024.100223

  55. [55] Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. Journal of applied econometrics, 22(2), 265–312. https://doi.org/10.1002/jae.951

  56. [56] Ahmad, M., Jiang, P., Majeed, A., Umar, M., Khan, Z., & Muhammad, S. (2020). The dynamic impact of natural resources, technological innovations and economic growth on ecological footprint: An advanced panel data estimation. Resources policy, 69, 101817. https://doi.org/10.1016/j.resourpol.2020.101817

  57. [57] Raihan, A., Atasoy, F. G., Coskun, M. B., Tanchangya, T., Rahman, J., Ridwan, M., … & Yer, H. (2024). Fintech adoption and sustainable deployment of natural resources: Evidence from mineral management in Brazil. Resources policy, 99, 105411. https://doi.org/10.1016/j.resourpol.2024.105411

  58. [58] Sharif, A., Baris-Tuzemen, O., Uzuner, G., Ozturk, I., & Sinha, A. (2020). Revisiting the role of renewable and non-renewable energy consumption on Turkey’s ecological footprint: Evidence from Quantile ARDL approach. Sustainable cities and society, 57, 102138. https://doi.org/10.1016/j.scs.2020.102138

  59. [59] Roumiani, A., & Mofidi, A. (2022). Predicting ecological footprint based on global macro indicators in G-20 countries using machine learning approaches. Environmental science and pollution research, 29(8), 11736–11755. https://doi.org/10.1007/s11356-021-16515-5

  60. [60] Liu, L., Rasool, Z., Ali, S., Wang, C., & Nazar, R. (2024). Robots for sustainability: Evaluating ecological footprints in leading AI-driven industrial nations. Technology in society, 76, 102460. https://doi.org/10.1016/j.techsoc.2024.102460

  61. [61] Raihan, A., Bala, S., Akther, A., Ridwan, M., Eleais, M., & Chakma, P. (2024). Advancing environmental sustainability in the G-7: The impact of the digital economy, technological innovation, and financial accessibility using panel ARDL approach. Journal of economy and technology, 4, 188–205. https://doi.org/10.1016/j.ject.2024.06.001

  62. [62] Voumik, L. C., & Ridwan, M. (2023). Impact of FDI, industrialization, and education on the environment in Argentina: ARDL approach. Heliyon, 9(1), e12872. https://www.cell.com/heliyon/fulltext/S2405-8440(23)00079-8

  63. [63] Nathaniel, S., Anyanwu, O., & Shah, M. (2020). Renewable energy, urbanization, and ecological footprint in the Middle East and North Africa region. Environmental science and pollution research, 27(13), 14601–14613. https://doi.org/10.1007/s11356-020-08017-7

  64. [64] Nathaniel, S. P., Barua, S., & Ahmed, Z. (2021). What drives ecological footprint in top ten tourist destinations? Evidence from advanced panel techniques. Environmental science and pollution research, 28(28), 38322–38331. https://doi.org/10.1007/s11356-021-13389-5

  65. [65] Raihan, A., Ridwan, M., Zimon, G., Rahman, J., Tanchangya, T., Bari, A. B. M. M., … & Akter, R. (2025). Dynamic effects of foreign direct investment, globalization, economic growth, and energy consumption on carbon emissions in Mexico: An ARDL approach. Innovation and green development, 4(2), 100207. https://doi.org/10.1016/j.igd.2025.100207

  66. [66] Gasimli, O., Haq, I. ul, Naradda Gamage, S. K., Shihadeh, F., Rajapakshe, P. S. K., & Shafiq, M. (2019). Energy, trade, urbanization and environmental degradation nexus in Sri Lanka: Bounds testing approach. Energies, 12(9), 1655. https://doi.org/10.3390/en12091655

  67. [67] Addai, K., Serener, B., & Kirikkaleli, D. (2022). Empirical analysis of the relationship among urbanization, economic growth and ecological footprint: Evidence from Eastern Europe. Environmental science and pollution research, 29(19), 27749–27760. https://doi.org/10.1007/s11356-021-17311-x

  68. [68] Voumik, L. C., Akter, S., Ridwan, M., Pujiati, A., Handayani, B. D., & Keshminder, J. S. (2023). Exploring the factors behind renewable energy consumption in Indonesia: Analyzing the impact of corruption and innovation using ARDL model. International journal of energy economics and policy, 13(5), 115–125. https://savearchive.zbw.eu/bitstream/11159/631285/1/1863816038_0.pdf

  69. [69] Dietz, T., & Rosa, E. A. (1997). Effects of population and affluence on CO2 emissions. Proceedings of the national academy of sciences, 94(1), 175–179. https://doi.org/10.1073/pnas.94.1.175

  70. [70] Dumitrescu, E.-I., & Hurlin, C. (2012). Testing for Granger non-causality in heterogeneous panels. Economic modelling, 29(4), 1450–1460. https://doi.org/10.1016/j.econmod.2012.02.014

  71. [71] Georgescu, I., & Kinnunen, J. (2024). Effects of FDI, GDP and energy use on ecological footprint in Finland: An ARDL approach. World development sustainability, 4, 100157. https://doi.org/10.1016/j.wds.2024.100157

  72. [72] Roumiani, A., & Mofidi, A. (2021). Ecological footprint prediction based on global macro indicators in G-20 countries using machine learning approaches. https://doi.org/10.21203/rs.3.rs-489246/v1

  73. [73] Akther, A., Tahrim, F., Voumik, L. C., Esquivias, M. A., & Pattak, D. C. (2025). Municipal solid waste dynamics: Economic, environmental, and technological determinants in Europe. Cleaner engineering and technology, 24, 100877. https://doi.org/10.1016/j.clet.2024.100877

  74. [74] Ridwan, M., Aspy, N. N., Bala, S., Hossain, M. E., Akther, A., Eleais, M., & Esquivias, M. A. (2024). Determinants of environmental sustainability in the United States: Analyzing the role of financial development and stock market capitalization using LCC framework. Discover sustainability, 5(1), 319. https://doi.org/10.1007/s43621-024-00539-1

  75. [75] Zhang, L., Li, Z., Kirikkaleli, D., Adebayo, T. S., Adeshola, I., & Akinsola, G. D. (2021). Modeling CO2 emissions in Malaysia: An application of Maki cointegration and wavelet coherence tests. Environmental science and pollution research, 28(20), 26030–26044. https://doi.org/10.1007/s11356-021-12430-x

  76. [76] Akhter, A., Al Shiam, S. A., Ridwan, M., Abir, S. I., Shoha, S., Nayeem, M. B., & Bibi, R. (2024). Assessing the impact of private investment in AI and financial globalization on load capacity factor: Evidence from United States. Journal of environmental science and economics, 3(3), 99–127. https://doi.org/10.56556/jescae.v3i3.977

  77. [77] Ridwan, M., Akther, A., Al Absy, M. S. M., Tahsin, M. S., Bin Ridzuan, A. R., Yagis, O., & Mukhta, K. P. (2024). The role of tourism, technological innovation, and globalization in driving energy demand in major tourist regions. International journal of energy economics and policy, 14(6), 675–689. https://savearchive.zbw.eu/bitstream/11159/703067/1/1914628187_0.pdf

Published

2025-05-22

How to Cite

Artificial Intelligence, Financial Development, and Ecological Sustainability: A Panel ARDL Assessment for the Nordic Region. (2025). Innovations in Environmental Economics , 1(2), 140-154. https://doi.org/10.48313/iee.v1i2.47

Similar Articles

You may also start an advanced similarity search for this article.